Expression analysis of candidate genes regulating successional tooth formation in the human embryo
نویسندگان
چکیده
Human dental development is characterized by formation of primary teeth, which are subsequently replaced by the secondary dentition. The secondary dentition consists of incisors, canines, and premolars, which are derived from the successional dental lamina of the corresponding primary tooth germs; and molar teeth, which develop as a continuation of the dental lamina. Currently, very little is known about the molecular regulation of human successional tooth formation. Here, we have investigated expression of three candidate regulators for human successional tooth formation; the Fibroblast Growth Factor-antagonist SPROUTY2, the Hedgehog co-receptor GAS1 and the RUNT-related transcription factor RUNX2. At around 8 weeks of development, only SPROUTY2 showed strong expression in both epithelium and mesenchyme of the early bud. During the cap stage between 12-14 weeks, SPROUTY2 predominated in the dental papilla and inner enamel epithelium of the developing tooth. No specific expression was seen in the successional dental lamina. GAS1 was expressed in dental papilla and follicle, and associated with mesenchyme adjacent to the primary dental lamina during the late cap stage. In addition, GAS1 was identifiable in mesenchyme adjacent to the successional lamina, particularly in the developing primary first molar. For RUNX2, expression predominated in the dental papilla and follicle. Localized expression was seen in mesenchyme adjacent to the primary dental lamina at the late cap stage; but surprisingly, not in the early successional lamina at these stages. These findings confirm that SPROUTY2, GAS1, and RUNX2 are all expressed during early human tooth development. The domains of GAS1 and RUNX2 are consistent with a role influencing function of the primary dental lamina but only GAS1 transcripts were identifiable in the successional lamina at these early stages of development.
منابع مشابه
Corrigendum: Expression analysis of candidate genes regulating successional tooth formation in the human embryo
[This corrects the article on p. 445 in vol. 5, PMID: 25484868.].
متن کاملState of the art in circulating miR-95 as a new candidate for diagnostic in Human Chronic Lymphocytic Leukemia
Backgrounds: MicroRNAs (miRNAs) have crucial roles in cellular and molecular processes related to different malignancies including chronic lymphocytic leukemia (CLL). In recent years the most studies demonstrated that the expression of miR-95, alter in several diseases. Long non-coding RNAs (lncRNAs) a heterogeneous group of non-coding and regulatory RNAs. The present study investigated the as...
متن کاملExpression profile of developmentally important genes in pre- and peri-implantation goat embryos produced in vitro
Background Little is understood about the regulation of gene expression during early goat embryo development. This study investigated the expression profile of 19 genes, known to be critical for early embryo development in mouse and human, at five different stages of goat in vitro embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst, and day 14 blastocyst). MaterialsAndMethods Stage-...
متن کاملQuantitative expression analysis of candidate genes for Septoria tritici blotch resistance in wheat (Triticum aestivum L.)
Septoria tritici blotch (STB), caused by the ascomycete fungus Mycosphaerella graminicola (asexual stage: Septoria tritici), is one of the most important foliar diseases of wheat. In this research, quantitative expression analysis of five candidate genes for the induction of resistance to STB (PR-1, Bsi, Msr, Per, and Ppi) was conducted in the wheat cultivars ‘Seri 82’ (susceptible) and ‘Fronta...
متن کاملI-34: Interactorme of Human Embryo Implan Implantation:Pathways,Networks
Background: A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. Materials and Methods: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014